Sea-Level Rise and Future Risk of Coastal Flooding in Maine

Vesela Kardzhilova-Dimitrova

GGR 904 GIS for Research and Analysis Instructor: Dr. Marcos Luna

Spring 2009

Outline

Flooding Impacts
Current Risk Communication
Change in Conditions
Research Objective
Risk Assessment

Flooding Impacts

Tuesday, April 17, 2007, in the Ferry Beach section of Saco Bay, Maine. (AP Photo/Robert F. Bukaty)

Wednesday, April 18, 2007, Nor'easter damage in York County, Maine. (AP Photo/Pat Wellenbach)

Flooding Impacts

238

17, 2007, in the Ferry Beach Photo/Robert F. Bukaty)

Wedi York

Mothers Day Flood 2006 York County, ME

Flooding Impacts

Causes more economic losses than any other natural hazard¹

Increase in property flood losses: \$3.3 to \$6 billion a year (1980s–2005)¹

Loss of life: about 100 people annually (1983-1997)²

 ¹ King, R. 2005. Federal flood insurance. Congressional Research Service Report for Congress. The Library of Congress, Washington, DC.
 ² Pielke, Ir. Peger A. and Mary W. Downtown, 2000. Precipitation and damaging floods: 1

² Pielke Jr., Roger A. and Mary W. Downtown. 2000. Precipitation and damaging floods: Trends in the United States, 1932-97. Journal of Climate 13, no. 20 (October): 3625-3637.

Current Risk Communication

- Flood Insurance Rate Maps (FIRMs)
 - Primary tool for flood risk assessment
 - Cover most of the U.S. territory
 - Out of date

FEMA Map Modernization Program

- Launched in the late '90s
- Update and conversion of the FIRMs to DFIRMs
- Does not consider future changes

Current Risk Communication

National Flood Insurance Program (NFIP)

- Established in 1968
- Protects properties
 - Uses the FIRMs to determine the necessity for insurance coverage
- Mandatory flood insurance for properties inside the 100-year floodplain
- Often criticized for ineffectiveness³

³ Patterson, Lauren A. and Martin W. Doyle. 2009. Assessing effectiveness of national flood policy through spatiotemporal monitoring of socioeconomic exposure. *Journal of the American Water Resources Association* 45, no. 1 (February): 237-252.

Current Risk Communication

FIRMs/DFIRMs

"100-year floods can happen 2 years in a row"⁴

100-year flood: at least 1% chance to occur in any given year

100-year floodplain (Special Flood Hazard Zones -SFHZ): delineate the borders of the 100-year flood 500-year flood: 0.2% to 1% chance to occur in any given year

⁴ http://ga.water.usgs.gov/edu/100yearflood.html

Change in Current Conditions

Global Sea-Level Rise (SLR)

Source: Church et al. 2001. Understanding Global Sea Levels: past, present, and future. *Sustainability Science* 3, no.1 (April): 9-22.

Change in Current Conditions

SLR Increased frequency of flooding Increased storm surge levels

Kirshen et al. 2007. Coastal flooding in the Northeastern United States due to climate change. *Mitigation and Adaptation Strategies for Global Change* 13, no. 5-6 (December): 437-451.

Wu et al. 2008. Potential impacts of sea-level rise on the Mid- and Upper-Atlantic region of the United States. *Climatic Change* (December).

Research Objective

To assess the current and future risk of coastal flooding in Maine, examining:

- The current physical exposure to coastal flooding in the state of Maine
 - The future physical exposure to coastal flooding in 2020s, 2050s, and 2100s
- The extent of the 100-year floodplain in 2020s, 2050s, and 2100s

How the distribution of flooding risk will change from the current situation to 2020s, 2050s, and 2100s

Research Objective

fining Risk

RISK = HAZARD x EXPOSURE

HAZARD = **COASTAL STORM**

EXPOSURE = ELEVATION

Current Risk Assessment

1. Finding the current water height during

+

Current Mean Sea Level Current Mean Tide Height Storm Surge Height

Data Source: NOAA Tides and Currents website

2. Applying the result to a Digital Elevation Model (DEM) to determine the areas under water

Data Source: Digital Terrain Model (DTM) from Maine GIS (MEGIS)

Current Risk Assessment

1. Finding the current water height during

3. Compare the extent of the modeled flood areas to the extent of the FIRMs flood zones by percentage of flooded territory Data Source: 1996 and 1997 FIRMs from MEGIS

Model (DEM) to determine the areas under water

Data Source: Digital Terrain Model (DTM) from Maine GIS (MEGIS)

Future Risk Assessment

Sea level rise projections for Maine
61 cm (2 ft) by 2100s
Sea level rise per year (2100 - 2009) = 91 years -91y/61cm = 7mm/year

8 cm (0.3 ft) by 2020s

29 cm (1 ft) by 2050s

Slovinsky, Peter A. and Stephen M. Dickson. 2006. *Report: Impacts of future sea level rise on the coastal floodplain*. MGS Open-File 06-14.

Future Risk Assessment

Sea level rise proje
61 cm (2 ft) by 2100
Sea level rise per s
(2100 –
91y/61cm = 7mm /e

Apply these three projections to the DEM to determine areas under future risk of flooding

Compare modeled flood zones with FIRMs flood zones by percentage of flooded territory

8 cm (0.3 ft) by 2020.

29 cm (1 ft) by 2050s

Slovinsky, Peter A. and Stephen M. Dickson. 2006. *Report: Impacts of future sea level rise on the coastal floodplain*. MGS Open-File 06-14.

In Summary...

Increasing Flood Losses

Outdated FIRMs

Sea Level Rise

Risk Assessment Investigations

Thank you